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Abstract

Background: The increased sequencing of pathogen genomes and the subsequent availability of genome-scale functional
datasets are expected to guide the experimental work necessary for target-based drug discovery. However, a major
bottleneck in this has been the difficulty of capturing and integrating relevant information in an easily accessible format for
identifying and prioritizing potential targets. The open-access resource TDRtargets.org facilitates drug target prioritization
for major tropical disease pathogens such as the mycobacteria Mycobacterium leprae and Mycobacterium tuberculosis; the
kinetoplastid protozoans Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi; the apicomplexan protozoans
Plasmodium falciparum, Plasmodium vivax, and Toxoplasma gondii; and the helminths Brugia malayi and Schistosoma
mansoni.

Methodology/Principal Findings: Here we present strategies to prioritize pathogen proteins based on whether their
properties meet criteria considered desirable in a drug target. These criteria are based upon both sequence-derived
information (e.g., molecular mass) and functional data on expression, essentiality, phenotypes, metabolic pathways,
assayability, and druggability. This approach also highlights the fact that data for many relevant criteria are lacking in less-
studied pathogens (e.g., helminths), and we demonstrate how this can be partially overcome by mapping data from
homologous genes in well-studied organisms. We also show how individual users can easily upload external datasets and
integrate them with existing data in TDRtargets.org to generate highly customized ranked lists of potential targets.

Conclusions/Significance: Using the datasets and the tools available in TDRtargets.org, we have generated illustrative lists
of potential drug targets in seven tropical disease pathogens. While these lists are broadly consistent with the research
community’s current interest in certain specific proteins, and suggest novel target candidates that may merit further study,
the lists can easily be modified in a user-specific manner, either by adjusting the weights for chosen criteria or by changing
the criteria that are included.
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Introduction

Several strategies exist for the pursuit of drugs to treat

neglected tropical diseases. Major approaches can generally be

classified as: (A) label extension, extending the indications of

existing drugs for other conditions to tropical diseases; (B) piggy-
back discovery, in which the discovery of new drugs is focused

on one or a few classes of well-studied and validated targets; and

(C) de novo drug discovery [1]. These strategies collectively

seek to exploit two possible sets of drug targets: those that have

been validated in other organisms and diseases, and those that

have not – perhaps because they are unique to neglected-disease

pathogens – but that nevertheless have potential as novel sites of

action.

Since experimental investigations of possible drug targets are

time-consuming and expensive, it is worthwhile to conduct in silico

analyses [2–8] to identify the proteins most worthy of experimental

follow-up. These analyses consider traits commonly thought to be
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desirable in a drug target, including essentiality, druggability

(whether drug-like molecules are likely to interact with the target),

assayability, specificity/selectivity (potential for inhibiting the

pathogen without harming the host), and importance in life-cycle

stages of the pathogen relevant to human health. Inferring these

traits from experimental data is a nontrivial task. For example,

guesses at a target’s essentiality can be made from gene knockout

experiments with the pathogen of interest [9] or related organisms

[3,6], from naturally occurring gene deletions in clinical isolates

[10], from microarray and/or proteomic data [11], and/or from

metabolic chokepoint (flux balance) studies [12,13]. Since the best

choices are partly a matter of opinion, there is a clear need for

databases that are flexible enough to integrate datasets from

different sources and to filter these datasets based on the

preferences of individual researchers.

To facilitate target-focused analyses for pathogens prioritized by

the World Health Organization’s Special Programme for

Research and Training in Tropical Diseases (TDR), TDRtarget-

s.org [14] was created as a central repository of target-related data.

The database may be used for two general scientific tasks: (A)

analysis of individual proteins, finding information that relates to

their potential as drug targets; and (B) genome-level analysis,

sorting and ranking multiple proteins as drug target candidates

according to user-specified criteria. The latter task is the main

focus of this paper.

TDRtargets.org is designed to facilitate multiple approaches to

target prioritization. Users can browse target lists that others have

posted (http://tdrtargets.org/published), generate their own lists

from standard criteria offered by the database, and/or extend the

criteria used to rank prospective targets by uploading files

representing additional published or unpublished data. A

previous publication [14] has outlined the user interface and

concepts underlying the possible queries. In this study, we provide

examples of whole-genome prioritization of targets, focusing on

key issues for the specific diseases covered. We use these

prioritization tools to generate lists of promising drug targets

for TDR organisms – lists which provide useful starting points for

target characterization in these organisms, as well as illustrate the

general utility and versatility of TDRtargets.org in identifying and

ranking targets.

Materials and Methods

Database Infrastructure
We have previously described the construction of the TDRtar-

gets.org database, as well as the formulation of searches (queries) to

identify proteins meeting criteria of interest and the viewing,

saving, and exporting of search results [14]. Since then, while the

overall workflow of the database has remained the same,

additional genomes and datasets have been included (see below),

and several improvements have been implemented on the user

interface side of the database. Although users have always been

able to perform ‘‘weighted union’’ queries, with different weights

(point values) assigned to different user-specified criteria, formu-

lating these queries and viewing and adjusting their results has

recently been made more convenient. To construct a weighted

union query from the website’s target search page, a user (1) selects

a pathogen (e.g., P. falciparum), (2) selects a criterion (e.g., functional

category = enzyme) with which to query the pathogen genes, (3)

enters a name and a weight for the query in the ‘‘Run this query’’

sub-menu at the bottom of the page, (4) clicks the ‘‘Next Query’’

button, and (5) repeats steps 2 to 4 until the last criterion is

entered, at which point the user selects ‘‘Run this query’’ rather

than ‘‘Next Query.’’ The search results are displayed on a page

where users have the option of changing the previously entered

weights for each criterion (Figure 1). (These results are archived on

the user’s history page, where he/she can combine different

subsets of previous queries with the Union function to obtain new

ranked target lists.) The presentation of ranked lists has also been

revised to display the criteria met by each protein (Figure 1).

Further flexibility in data analysis is provided by an option to

export the results to a dynamic spreadsheet so that proteins’

fulfillment of individual criteria can be viewed and the weights of

the criteria can be adjusted offline.

Using External Data in TDRtargets.org
The TDRtargets.org web application lets users take advantage

of datasets obtained externally or in-house. Lists of genes matching

user-defined criteria may be saved as text files (each containing a

column of gene identifiers – one per line – plus an optional second

column for point values, if the targets have been ranked outside of

TDRtargets.org) and uploaded at the user’s history page.

Uploaded lists can be combined with other gene sets from the

same organism using any of the history page tools, including

ranking by weighted union.

In the present work, a number of target lists meeting different

criteria were obtained from external resources, uploaded into

TDRtargets.org, and used in various prioritization strategies (see

Results), as follows. (A) T. cruzi genes with proteomic evidence of

expression in amastigotes (at least 2 mass spectra/peptides mapped

to the protein) were obtained from TriTrypDB.org [15]. (B) S.

mansoni genes with evidence for expression at the transcript level

(i.e., genes with mapped expressed sequence tags derived from the

‘‘egg,’’ ‘‘schistosomula,’’ and ‘‘adult worm’’ cDNA libraries) were

taken from SchistoDB.net [16]. (C) Drosophila melanogaster genes

associated with abnormal phenotype tags (i.e., ‘‘lethal’’ and

‘‘neurophysiological defect’’) were taken from FlyBase.org [17].

This list was converted into a list of the corresponding S. mansoni

orthologs (available from OrthoMCL.org [15]) before uploading

into TDRtargets.org.

Genome Data and Functional Datasets
The current version of the database includes genome data for

ten different pathogens (Brugia malayi, Leishmania major, Mycobacte-

rium leprae, Mycobacterium tuberculosis, Plasmodium falciparum, Plasmo-

Author Summary

In cell-based drug development, researchers attempt to
create drugs that kill a pathogen without necessarily
understanding the details of how the drugs work. In
contrast, target-based drug development entails the
search for compounds that act on a specific intracellular
target—often a protein known or suspected to be
required for survival of the pathogen. The latter approach
to drug development has been facilitated greatly by the
sequencing of many pathogen genomes and the incorpo-
ration of genome data into user-friendly databases. The
present paper shows how the database TDRtargets.org
can identify proteins that might be considered good drug
targets for diseases such as African sleeping sickness,
Chagas disease, parasitic worm infections, tuberculosis,
and malaria. These proteins may score highly in searches
of the database because they are dissimilar to human
proteins, are structurally similar to other ‘‘druggable’’
proteins, have functions that are easy to measure, and/or
fulfill other criteria. Researchers can use the lists of high-
scoring proteins as a basis for deciding which potential
drug targets to pursue experimentally.

Identification of Drug Targets In Silico
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dium vivax, Schistosoma mansoni, Toxoplasma gondii, Trypanosoma brucei,

and Trypanosoma cruzi) and one endosymbiont bacterium (Wolba-

chia, endosymbiont of B. malayi). The depth of data coverage in

various functional datasets (searchable at http://tdrtargets.org/

search) varies for different organisms; wherever possible, gaps in

coverage are compensated for by mapping relevant information

from orthologous proteins in other organisms. (For example,

protein structure data available for P. falciparum proteins were

mapped to P. vivax proteins.) Ortholog identification on whole

genomes was carried out using tools available from OrthoM-

CL.org [18]. Data recently added to TDRtargets.org include

curated data on production of recombinant proteins and activity

assays from BRENDA [19]; three-dimensional models of proteins

from B. malayi and its endosymbiont Wolbachia, M. leprae, and S.

mansoni, obtained from ModBase [20]; and phylogenetic informa-

tion on Arabidopsis thaliana (so that users can search for proteins

with or without orthologs in plants).

Ranking Target Genes via Weighted Unions
TDRtargets.org has a flexible ranking system for prioritizing

target proteins. In multi-criteria searches, it is possible to take a

Boolean intersection of the criteria so that only those proteins with

all of the desired traits (e.g., essentiality AND druggability AND

assayability, etc.) are selected. However, a protein may lack one or

more preferred properties and still be the target of an effective

drug (Table 1). Therefore the prioritization queries presented

below are devised as weighted unions (see ‘‘Database infrastruc-

ture’’ above), in which each criterion is assigned a subjective

weight (point value) and targets earn points for each criterion they

meet. (Less important and undesirable criteria are given small and

negative weights, respectively.) These queries return ranked lists of

all potential targets, ordered by cumulative score. Target lists can

then be re-ranked, if desired, by changing the weights and/or

adding additional criteria (see ‘‘Database infrastructure’’ above).

Overview of Queries Presented in This Paper
The criteria used in generating the lists presented below are

summarized in Figure 2. As a starting point, a basic set of criteria

of general interest were chosen to frame a ‘‘standard’’ query for

identifying targets in L. major (see Query 2 in Figure 2). In

compiling this basic set of criteria, we included most datasets that

are commonly available for organisms with complete genomic

information so that the standard query could be easily applied to

different pathogens. Queries 3, 4, and 5 of Figure 2 are examples

of extending the standard query. Queries 6, 7, 8, and 9 of Figure 2

are framed in a pathogen-specific manner to prioritize target

proteins from a particular metabolic pathway, subcellular

location, or life-cycle stage. These queries make use of criteria

based on external datasets uploaded to TDRtargets.org. (Readers

can explore the upload tool at http://tdrtargets.org/history.)

Queries 10 and 11 of Figure 2 were based heavily on data

obtained by manual curation of the literature [21] and

homology/orthology analysis for protein-specific information,

illustrating how even incompletely annotated genomes are

amenable to target identification. Additional details of these

queries are noted below.

Results

Searching for Candidate Drug Targets in Leishmania
An example of the weighted-union approach to target

prioritization (see Methods) is shown in Query 2 of Figure 2,

which covers the Leishmania major genome. In this example, points

are awarded for many of the criteria covered in Table 1, plus some

additional conditions. From these criteria a list of prioritized

targets is generated (Table 2). Such a list is hardly the final word in

Leishmania target selection, however. The researchers who

generated the list in Table 2 may subsequently decide that, since

essentiality data for Leishmania genes are very limited, they will

Figure 1. Highlights of the new, improved display of query results in TDRtargets.org. (A) The ‘‘Your scoring strategy’’ panel displays and
allows adjustment of weights associated with each criterion. (B) An additional panel shows the distribution of weights among the proteins in the
genome. To generate this histogram, all weights in the prioritization strategy were divided into 10 bins; the mean weight for each bin is shown below
the x axis. In this example, most proteins had a weight of 0–100, with a small number exceeding 300. (C) Proteins are displayed in descending order
of total weight; a grid shows the criteria that were met by each protein.
doi:10.1371/journal.pntd.0000804.g001
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consider the presence of an essential ortholog in at least one other

organism to be an acceptable predictor of essentiality. Orthologous

proteins usually have the same function [22], and several studies

indicate that having essential orthologs is predictive of essentiality

[23,24]. The researchers could then amend their initial query so

that, for example, 50 additional points are awarded to targets

whose orthologs are essential in C. elegans, E. coli, M. tuberculosis,

and/or S. cerevisiae (the four organisms for which genome-wide

essentiality data are available in TDRtargets.org). Such a revision

can easily be made by running a new query using the ‘‘Any

evidence of essentiality in any species’’ option within the

Essentiality subsection of the Search For Genes/Targets page

and then using the query history page to find the union of this

query and the previous one. The results are similar to but distinct

from the previous results (Table 3).

Now consider a more drastic revision of the Leishmania search:

application of the previous criteria (Figure 2, Query 3) to two other

pathogens, namely P. falciparum and M. tuberculosis. This too is

readily done within TDRtargets.org – there is a ‘‘Change species’’

option on the Query History page – again highlighting the ease of

modifying previous searches. While use of exactly the same criteria

to prioritize targets in different species might seem naı̈ve, the

results (Tables 4 and 5) are instructive. First of all, the top-ranked

proteins of each species are rather different, showing that this

search strategy is sensitive to species differences, as opposed to

being unalterably biased toward the same proteins in every species.

Second, many of the top-ranked targets in each species appear to

be appealing options. For example, the three top-scoring

targets from each species – dihydrofolate reductase/thymidylate

synthase, enoyl-ACP reductase, and triose-phosphate isomerase in

Table 2. Preliminary genome-wide prioritization of Leishmania major targets.

Ranking Gene__name Gene product Weight

1 LmjF29.0820 cysteine peptidase C (CPC),CPC cysteine peptidase, Clan CA, family C1, Cathepsin B-like 416

2 LmjF05.0350 trypanothione reductase 386

2 LmjF06.0860 dihydrofolate reductase-thymidylate synthase 386

2 LmjF23.0050 cyclophilin, putative,peptidyl-prolyl cis-trans isomerase, putative 386

2 LmjF25.0910 cyclophilin a 386

2 LmjF06.0120 cyclophilin 386

2 LmjF18.0270 protein kinase, putative,glycogen synthase kinase, putative 386

8 LmjF36.1960 phosphomannomutase, putative 366

8 LmjF23.0270 pteridine reductase 1 366

10 LmjF30.2970 glyceraldehyde 3-phosphate dehydrogenase, glycosomal 351

10 LmjF12.0220 hydroxyacylglutathione hydrolase, putative,glyoxalase II, putative 351

10 LmjF24.0850 triosephosphate isomerase 351

13 LmjF27.1870 trypanothione synthetase, putative 341

13 LmjF06.0560 deoxyuridine triphosphatase, putative,dUTP diphosphatase 341

15 LmjF21.0250 hexokinase, putative 336

15 LmjF25.1320 serine/threonine protein phosphatase, putative 336

15 LmjF19.0550 methionine aminopeptidase, putative,metallo-peptidase, Clan MG, Family M24 336

15 LmjF34.1260 mitochondrial DNA polymerase I protein A, putative 336

15 LmjF30.0880 adenosine kinase, putative 336

15 LmjF33.1630 cyclophilin, putative 336

15 LmjF10.0890 FKBP-type peptidyl-prolyl cis-trans isomerase, putative 336

15 LmjF04.1160 fructose-1,6-bisphosphatase, cytosolic, putative 336

15 LmjF23.0950 cytosolic leucyl aminopeptidase,metallo-peptidase, Clan MF, Family M17 336

15 LmjF32.1580 phosphomannose isomerase, putative 336

25 LmjF36.2380 sterol 24-c-methyltransferase, putative 326

25 LmjF36.2390 sterol 24-c-methyltransferase, putative 326

Top targets according to the criteria shown in Query 2 of Figure 2. Complete genome-wide rankings for this example and all other examples discussed in the paper
(Tables 3–11) are available online at http://www.tdrtargets.org/published/browse/366. Please note that multiple targets often receive the same total weight, and that
the order in which these ‘‘tied’’ targets are displayed has no significance.
doi:10.1371/journal.pntd.0000804.t002

Figure 2. A summary of the multiparameter search queries presented in this study. Ten different queries (Queries 2–11) are listed as
individual columns for which the criteria are shown on the left. For each criterion, the number of qualifying proteins from a given pathogen is shown
in black and the associated weight is shown in red within parentheses. Symbols: (#) enzymes were selected by combining searches by EC number
and by functional category, except for Queries 10 and 11, which were based only on EC number; (&) the conserved-in-taxon criterion refers to the
presence of orthologs in L. major, T. brucei, and T. cruzi (Tables 2 and 3), P. falciparum and P. vivax (Tables 4 and 7), M. tuberculosis and M. leprae
(Table 5), and L. major and T. cruzi (Table 8); (") druggability and compound desirability scores were queried using respective cutoff values of $0.6
and .0.3 (Tables 2 to 5), $0.4 and .0.2 (Tables 6 and 7), and $0.5 (druggability scores only; Table 8).
doi:10.1371/journal.pntd.0000804.g002
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P. falciparum and enoyl-ACP reductase (InhA), glutamine synthe-

tase, and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) in

M. tuberculosis – have all attracted interest as proven or prospective

targets [25–30]. It is interesting that legitimate candidates such as

these rise to the top of the target rankings despite certain quirks of

this ‘‘one set of criteria fits all species’’ example. In the M.

tuberculosis prioritization, for instance, many of the top-ranked

targets are essential even though the genome-wide mutagenesis

data available for this species were not queried. Thus, although

these lists are imperfect, they generally suggest that rational

choices of criteria lead to plausible and informative rankings of

target desirability across species.

T. brucei and P. falciparum: Metabolic Pathway- and
Organelle-Specific Targets

While TDRtargets.org integrates numerous datasets relevant to

target prioritization, it cannot possibly anticipate every possible

prioritization strategy that could be used by any given researcher.

Accordingly, users can upload (weighted or unweighted) lists of

targets meeting any criteria for which they have relevant data;

these may then be combined with other queries covered by

TDRtargets.org. Supplementation of standard TDRtargets.org

criteria with a user-provided criterion is illustrated in the following

example. Researchers specializing in the T. brucei glycolytic

pathway are convinced that this pathway is essential in these

parasites and wish to rank the enzymes within this pathway for

their suitability as drug targets. Since they already assume the

pathway to be essential and know glycolysis is also present in host

cells, they may not address these issues in their search criteria, but

may instead award points as listed in Query 6 of Figure 2. The

query shown there combines criteria addressing integral TDRtar-

gets.org data (such as availability of structural models) with a user-

generated list of ‘‘bonus points’’ to some T. brucei enzymes in

proportion to their relative control over the glycolytic flux [31].

The rationale for such a scoring might be that the greater an

enzyme’s flux control, the less completely it must be inhibited for

flux through the entire pathway to be affected (and thus the better

a target it is). In this example, the inclusion of flux control as a

criterion lifts the two glycosomal orthologs of glyceraldehyde-3-

phosphate dehydrogenase, the enzyme with the highest control

Table 3. Revised L. major rankings after incorporating an essential-in-other-species criterion.

Ranking Gene name Gene product Weight

1 LmjF29.0820 cysteine peptidase C (CPC),CPC cysteine peptidase, Clan CA, family C1, Cathepsin B-like 466

2 LmjF05.0350 trypanothione reductase 436

2 LmjF06.0860 dihydrofolate reductase-thymidylate synthase 436

2 LmjF23.0050 cyclophilin, putative,peptidyl-prolyl cis-trans isomerase, putative 436

2 LmjF25.0910 cyclophilin a 436

2 LmjF06.0120 cyclophilin 436

2 LmjF18.0270 protein kinase, putative,glycogen synthase kinase, putative 436

8 LmjF36.1960 phosphomannomutase, putative 416

9 LmjF30.2970 glyceraldehyde 3-phosphate dehydrogenase, glycosomal 401

9 LmjF24.0850 triosephosphate isomerase 401

11 LmjF21.0250 hexokinase, putative 386

11 LmjF25.1320 serine/threonine protein phosphatase, putative 386

11 LmjF19.0550 methionine aminopeptidase, putative,metallo-peptidase, Clan MG, Family M24 386

11 LmjF34.1260 mitochondrial DNA polymerase I protein A, putative 386

11 LmjF30.0880 adenosine kinase, putative 386

11 LmjF33.1630 cyclophilin, putative 386

11 LmjF32.1580 phosphomannose isomerase, putative 386

18 LmjF35.0030 pyruvate kinase, putative 366

18 LmjF36.1260 fructose-1,6-bisphosphate aldolase 366

18 LmjF35.0020 pyruvate kinase, putative 366

18 LmjF16.1540 DNA polymerase I alpha catalytic subunit, putative 366

18 LmjF20.0100 phosphoglycerate kinase C, glycosomal 366

18 LmjF18.0990 UTP-glucose-1-phosphate uridylyltransferase 2, putative 366

18 LmjF18.0090 alpha glucosidase II subunit, putative 366

18 LmjF21.1080 cell division protein kinase 2,cdc2-related kinase 366

18 LmjF26.0140 adenine phosphoribosyltransferase 366

18 LmjF12.0530 glucose-6-phosphate isomerase 366

18 LmjF23.0270 pteridine reductase 1 366

18 LmjF33.1690 DNA polymerase delta catalytic subunit, putative 366

18 LmjF28.2280 DNA topoisomerase ii 366

Top targets according to the criteria shown in Query 3 of Figure 2. Italicized targets are those that were not top-ranked in the list shown in Table 2.
doi:10.1371/journal.pntd.0000804.t003
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coefficient, to the top of the priority list (Table 6). The recent

genetic validation of this enzyme [32] likewise identifies it as a

possible target of interest. Interestingly, hexokinase was thought to

have a much lower control coefficient [31] but may also have

promise as a drug target [33].

The next scenario also employs a user-provided list, which in

this case permits scrutiny of a specific organelle rather than a

specific metabolic pathway. Consider a newly independent

crystallographer with a special interest in Plasmodium apicoplasts,

which are absent from the human host and thus are likely to

contain many appealing drug targets [34]. The PlasmoAP

algorithm [35] predicts that 485 proteins are localized to the

apicoplast; the user can download this list from PlasmoDB.org

[36], manually delete proteins that seem unlikely to reside in the

apicoplast, and then upload the modified list to TDRtargets.org.

In sorting through the ,400 proteins likely to reside in the

apicoplast, the user may decide to minimize competition with labs

already working on apicoplast biology by penalizing well-studied

proteins (e.g., subtracting 100 points from targets whose 3D

structures have already been solved) while rewarding other

desirable characteristics such as those discussed above (likely

essentiality, lack of orthologs in humans, etc.). Finally, a previous

publication [37] has convinced the hypothetical user that a low

molecular weight and low isoelectric point (pI) improve the odds of

successful expression of soluble Plasmodium proteins, so those

factors are weighted accordingly (Query 7 of Figure 2). The most

highly ranked proteins in this example (Table 7) include some

proteins (e.g., pseudouridine synthetase and cysteine desulfurase)

that are rarely mentioned in the Plasmodium literature, consistent

with this researcher’s desire to explore truly novel target options.

Trypanosoma cruzi: Candidate Targets Associated with an
Intracellular Lifestyle

Unlike the bloodstream trypomastigotes of African Trypano-

somes (Salivaria), the T. cruzi (Stercoraria) bloodstream forms do

not replicate, and instead invade cells. In this parasitic strategy,

Table 4. Application of standard search criteria to P. falciparum.

Ranking Gene name Gene product Weight

1 PFD0830w bifunctional dihydrofolate reductase-thymidylate synthase 486

2 PFF0730c enoyl-acyl carrier reductase 461

3 PF14_0378 triose-phosphate isomerase 451

4 PF11_0282 deoxyuridine 59-triphosphate nucleotidohydrolase, putative 436

4 PFC0975c PFCYP19, cyclophilin, peptidyl-prolyl cis-trans isomerase 436

4 PF10_0289 adenosine deaminase, putative 436

4 PFI1105w Phosphoglycerate kinase 436

4 PF14_0192 glutathione reductase 436

4 PFE1050w adenosylhomocysteinase(S-adenosyl-L-homocysteine hydrolase) 436

10 PFD0980w holo-(acyl-carrier protein) synthase, putative 426

10 PFF1105c chorismate synthase 426

12 PFF0160c dihydroorotate dehydrogenase, mitochondrial precursor 416

12 PF14_0053 ribonucleotide reductase small subunit 416

12 PF14_0425 fructose-bisphosphate aldolase 416

15 PF14_0641 1-deoxy-D-xylulose 5-phosphate reductoisomerase 411

15 PFB0505c beta-ketoacyl-acyl carrier protein synthase III precursor, putative 411

17 PF14_0164 NADP-specific glutamate dehydrogenase 401

17 PF14_0142 serine/threonine protein phosphatase, putative 401

17 PF11_0377 casein kinase 1 401

17 PFL2275c 70 kDa peptidylprolyl isomerase, putative 401

17 PF13_0287 adenylosuccinate synthetase 401

17 PF10_0121 hypoxanthine phosphoribosyltransferase 401

23 PF08_0095 dihydropteroate synthetase 391

24 PFE1360c methionine aminopeptidase, putative 386

24 PF14_0327 methionine aminopeptidase, type II, putative 386

24 PFF1155w hexokinase 386

24 PFI1110w glutamate—ammonia ligase (glutamine synthetase), putative 386

24 PFC0525c glycogen synthase kinase, putative 386

24 PF10_0150 methionine aminopeptidase, putative 386

24 PFI1170c thioredoxin reductase 386

24 PF11_0164 peptidyl-prolyl cis-trans isomerase 386

Top targets for P. falciparum according to the search criteria shown in Query 4 of Figure 2.
Targets mentioned in the text are italicized.
doi:10.1371/journal.pntd.0000804.t004
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which is shared with Leishmania spp., the replicative amastigotes are

the intracellular parasite forms that persist and maintain the

infection. Given the early evolutionary divergence of Salivarian

trypanosomes [38] and the different strategies used by Salivarian

and Stercorarian parasites to mount and maintain an infection,

these groups of parasites may exhibit numerous instances of (A)

gene loss and (B) gene duplications followed by neofunctionaliza-

tion [39]. Proteins that are orthologous between T. cruzi and

Leishmania but that lack T. brucei counterparts may represent

proteins vital to intracellular survival and/or growth, which could

be excellent targets for drug development.

To look for such proteins, we used a general strategy similar to

that used for Leishmania (see Query 3 of Figure 2) but now focused

on T. cruzi, with an extra phylogeny-based restriction: additional

weight was added to proteins that have been conserved in

Leishmania and T. cruzi but that have been lost or substantially

changed in T. brucei. The attributes and weights used in this query

are shown in Query 8 of Figure 2. The strategy also relies on

proteomic evidence of expression in intracellular amastigotes [40].

However, because the proteomic data have a low coverage of the

proteome, only a moderate weight has been assigned to this

criterion. (This illustrates users’ ability to assign relative weights

based not only on which characteristics they consider predictive of

target desirability, but also on their confidence that available

experimental datasets accurately reflect those characteristics.)

The results of this prioritization of T. cruzi targets are shown in

Table 8. Because of the hybrid nature of the strain used to

sequence the genome of T. cruzi, the list is somewhat redundant:

most single copy genes appear twice in all genome databases. The

top 32 targets include representatives of validated pathways –

ergosterol biosynthesis, as represented by sterol C-24 reductase,

and glycolysis, as represented by glucokinase – and other

interesting alternatives for drug development. As suggested above,

glycolysis is an essential pathway in trypanosomes, and the

glycosome-localized glucokinase has attracted interest as a possible

target since it was discovered in the sequenced Leishmania and T.

cruzi genomes [41]. On the other hand, the top- ranked sterol C-24

reductase provides a good example of the attractiveness of the

phylogenetic criteria used in this strategy. The ergosterol

biosynthesis pathway is also present in T. brucei, although it is

not essential for the bloodstream forms, which scavenge sterols

from the host [42]. This highly ranked C-24 reductase belongs to

the OrthoMCL ortholog group OG4_16908 (OrthoMCL version

4), which contains orthologs from the genomes of T. cruzi, L. major,

and yeast (ERG4). However, this enzyme is apparently absent in

the genomes of T. brucei TREU927, T. brucei gambiense, T. vivax, and

Table 5. Application of standard search criteria to M. tuberculosis.

Ranking Gene name Gene product Weight

1 Rv1484 nadh-dependent enoyl-[acyl-carrier-protein] reductase inha (nadh-dependent enoyl-acp reductase) 511

2 Rv2220 glutamine synthetase glna1 (glutamine synthase) (gs-i) 451

3 Rv3227 3-phosphoshikimate 1-carboxyvinyltransferase aroa (5-enolpyruvylshikimate-3-phosphate
synthase) (epsp synthase) (epsps)

426

4 Rv3581c probable 2c-methyl-d-erythritol 2,4-cyclodiphosphate synthase ispf (mecps) 406

4 Rv2763c dihydrofolate reductase dfra (dhfr) (tetrahydrofolate dehydrogenase) 406

4 Rv2537c 3-dehydroquinate dehydratase arod (aroq) (3-dehydroquinase) (type ii dhqase) 406

4 Rv3602c probable pantoate—beta-alanine ligase panc (pantothenate synthetase) (pantoate activating enzyme) 406

4 Rv1293 probable diaminopimelate decarboxylase lysa (dap decarboxylase) 406

9 Rv0533c 3-oxoacyl-[acyl-carrier-protein] synthase iii fabh (beta-ketoacyl-acp synthase iii) (kas iii) 401

9 Rv2861c probable methionine aminopeptidase mapb (map) (peptidase m) 401

9 Rv2860c probable glutamine synthetase glna4 (glutamine synthase) (gs-ii) 401

9 Rv2222c probable glutamine synthetase glna2 (glutamine synthase) (gs-ii) 401

9 Rv1878 probable glutamine synthetase glna3 (glutamine synthase) (gs-i) 401

14 Rv2870c probable 1-deoxy-d-xylulose 5-phosphate reductoisomerase dxr (dxp reductoisomerase)
(1-deoxyxylulose-5-phosphate reductoisomeras

396

15 Rv3566c arylamine n-acetyltransferase nat (arylamine acetylase) 391

15 Rv1207 probable dihydropteroate synthase 2 folp2 (dhps 2) (dihydropteroate pyrophosphorylase 2) 391

15 Rv2225 probable 3-methyl-2-oxobutanoate hydroxymethyltransferase panb 391

15 Rv3628 inorganic pyrophosphatase ppa (pyrophosphate phospho-hydrolase) (ppase)
(inorganic diphosphatase) (diphosphate phospho-hydrolase

391

15 Rv3014c probable dna ligase [nad dependent] liga (polydeoxyribonucleotide synthase [nad+]) 391

20 Rv1483 3-oxoacyl-[acyl-carrier protein] reductase fabg1 (3-ketoacyl-acyl carrier protein reductase)
(mycolic acid biosynthesis a protei

386

20 Rv1007c probable methionyl-trna synthetase mets (metrs) (methionine—trna ligase) 386

20 Rv0014c transmembrane serine/threonine-protein kinase b pknb (protein kinase b) (stpk b) 386

23 Rv2428 alkyl hydroperoxide reductase c protein ahpc (alkyl hydroperoxidase c) 381

24 Rv0764c cytochrome p450 51 cyp51 (cypl1) (p450-l1a1) (sterol 14-alpha demethylase)
(lanosterol 14-alpha demethylase) (p450-14dm)

376

Top targets for M. tuberculosis according to the search criteria shown in Query 5 of Figure 2. Targets mentioned in the text are italicized.
doi:10.1371/journal.pntd.0000804.t005
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T. congolense. In yeast, ERG4 catalyzes the final step in ergosterol

biosynthesis, and although mutants are viable, they show a

number of abnormal phenotypes and decreased fitness (see http://

www.yeastgenome.org/cgi-bin/locus.fpl?locus = ERG4).

Another top-ranking target in Table 8 is the T. cruzi serine

acetyltransferase (TcSAT), involved in the de novo synthesis of

cysteine, which is present in Leishmania and T. cruzi and absent in

T. brucei [43]. Cysteine in these parasites is important for the

biosynthesis of polyamines and for antioxidant metabolism based

on trypanothione, the trypanosome equivalent of glutathione.

Inhibitors of the E. coli SAT enzyme have recently been shown to

inhibit the growth of Entamoeba histolytica, another pathogen that is

highly sensitive to oxidative stress [44].

Other interesting targets in this list include a putative amine

oxidase (Tc00.1047053511277.600) which further analysis shows is

conserved in several Leishmania species but absent in sequenced T.

brucei subspecies; a putative phosphatidate cytidylyltransferase

(Tc00.1047053509073.70) that belongs to an ortholog group with

a very restricted phylogenetic distribution (OG4_29276), with

members from many Leishmania species with complete genomes,

Entamoeba histolytica (another pathogen), and two non-pathogenic

species (Thalassiosira pseudonana and Aquifex aeolicus); a protein kinase

(Tc00.1047053509287.20) whose yeast orthologs regulate endocy-

tosis through the organization and function of the actin cytoskel-

eton; and a tyrosine protein phosphatase (Tc00.1047053506839.60)

that also shows an unusual phylogenetic distribution, being almost

exclusively present in T. cruzi, Leishmania spp., and metazoa.

Mycobacterium tuberculosis: Exploiting Previous
Prioritizations

Previous target prioritization efforts [2–8] raise the question of

how these efforts should be viewed in relation to TDRtargets.org.

We consider TDRtargets.org to be complementary to others’

prioritization work, and anticipate that it can be used to combine

Table 6. Prioritization of glycolytic enzymes in T. brucei.

Ranking Gene name Gene product Weight

1 Tb927.1.700 phosphoglycerate kinase 1101

1 Tb11.02.3210 triosephosphate isomerase 1101

1 Tb927.6.4300 glyceraldehyde 3-phosphate dehydrogenase, glycosomal 1101

1 Tb927.6.4280 glyceraldehyde 3-phosphate dehydrogenase, glycosomal 1101

5 Tb927.1.710 phosphoglycerate kinase 1081

5 Tb09.211.0540 fructose-1,6-bisphosphate, cytosolic 1081

5 Tb10.70.5800 hexokinase 1081

5 Tb10.70.5820 hexokinase 1081

9 Tb927.3.3270 ATP-dependent phosphofructokinase,6-phospho-1-fructokinase 1071

9 Tb10.70.1370 fructose-bisphosphate aldolase, glycosomal 1071

9 Tb927.1.3830 glucose-6-phosphate isomerase, glycosomal 1071

9 Tb10.70.4740 enolase 1071

13 Tb927.1.720 phosphoglycerate kinase 1061

13 Tb10.6k15.3850 glyceraldehyde 3-phosphate dehydrogenase, cytosolic 1061

15 Tb927.3.4390 dihydrolipoamide dehydrogenase, putative 1051

15 Tb11.01.8100 enolase, putative 1051

15 Tb10.61.2680 pyruvate kinase 1 1051

15 Tb09.211.1370 glyceraldehyde-3-phosphate dehydrogenase, putative 1051

15 Tb927.8.7380 dihydrolipoamide dehydrogenase, point mutation,acetoin dehydrogenase
e3 component, putative

1051

15 Tb927.4.5040 dihydrolipoamide dehydrogenase, putative 1051

15 Tb927.5.3580 phosphoglycerate mutase protein, putative 1051

15 Tb11.01.8470 dihydrolipoyl dehydrogenase 1051

23 Tb10.6k15.2620 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1031

23 Tb927.8.2520 acetyl-CoA synthetase, putative 1031

25 Tb927.6.3050 aldehyde dehydrogenase family, putative 1011

25 Tb10.6k15.3080 dihydrolipoamide acetyltransferase precursor, putative 1011

25 Tb10.70.5380 dihydrolipoamide acetyltransferase, putative 1011

25 Tb10.389.0890 pyruvate dehydrogenase E1 component alpha subunit, putative 1011

25 Tb927.3.2030 acylphosphatase, putative 1011

25 Tb927.6.4210 aldehyde dehydrogenase, putative 1011

25 Tb927.3.1790 pyruvate dehydrogenase E1 beta subunit, putative 1011

32 Tb10.70.2900 2-oxoisovalerate dehydrogenase beta subunit, mitochondrial precursor, putative 1001

Top targets according to the search criteria shown in Query 6 of Figure 2. Targets mentioned in the text are italicized.
doi:10.1371/journal.pntd.0000804.t006
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and apply the ranking methods of other target identification

efforts. For instance, a recent paper on M. tuberculosis by Hasan and

colleagues [4] provided an excellent synthesis of experimental data

to rank targets by persistence in dormant stages. These data

(available in [4] as Supplemental Dataset S1, and also at http://

tdrtargets.org/published/browse/379) can be easily interrogated

and combined with other queries using TDRtargets.org. For

example, while Hasan et al.’s rankings considered proteins essential

for growth on defined medium in vitro [45,46], they did not reward

proteins thought to be essential for growth in macrophages or in

the infection of mice [47,48], which may well be very relevant to

human infection. In addition, because Hasan et al. awarded points

to proteins with solved crystal structures, it seems apt to give points

to proteins whose structures have been solved during the four years

that have elapsed since the original analysis was published.

TDRtargets.org was therefore used to make a few modifications to

one set of Hasan et al. ’s rankings: the set that emphasized targets’

likely importance in persistent-stage disease. We uploaded a

modified version of this list that excluded points for PDB

structures, then gave additional points to all genes represented in

the Protein Data Bank of crystal structures [49] as of April 2010.

To these subtotals, we added points based on an analysis of latent-

stage infections by Murphy & Brown [7]. In that analysis, genes

were given upregulation and downregulation scores based on their

expression in various models of dormancy, thus offering a distinct

estimate of genes’ importance during latency, and ‘‘attenuation’’

scores based on the effect of gene knockouts on growth in various

contexts, including the macrophage and mouse studies noted

above. (See ‘‘Additional file 1’’ from [7]; see also http://tdrtargets.

org/published/browse/383.) The combined input of the two

previous studies was thus used to create a ‘‘consensus list’’ (Table 9)

that might be considered superior to either one alone. Combining

the two previous analyses could also be done off-line using

spreadsheets, but performing these operations within TDRtarget-

s.org is considerably faster and facilitates retrieval of TDRtarget-

s.org-compiled information on each individual target. Naturally,

our ‘‘consensus list’’ reflects the limitations of the previous

analyses, e.g., the low rankings of important persistent-stage

proteins such as Rv0470c (mycolic acid synthase, PcaA) and

Rv2583c (GTP pyrophosphokinase, RelA), as discussed by Hasan

et al. [4].

Helminths: The Importance of Homology
Since many valuable helminth datasets are only starting to

emerge, our attempts to prioritize helminth targets required some

analysis beyond the standard TDRtargets.org queries. For

example, B. malayi and S. mansoni proteins are not yet scored for

druggability in TDRtargets.org, so we assessed their druggability

Table 7. Possible novel drug targets in P. falciparum apicoplasts.

Ranking Gene name Gene product Weight

1 PF13_0176 apurinic/apyrimidinic endonuclease Apn1 1286

2 PFA0225w LytB protein 1276

3 MAL13P1.221 aspartate carbamoyltransferase 1261

3 PFB0890c pseudouridine synthetase, putative 1261

3 PF07_0068 cysteine desulfurase, putative 1261

3 PF10_0221 GcpE protein 1261

7 PF14_0063 ATP-dependent Clp protease, putative 1256

7 PF11_0270 threonine — tRNA ligase, putative 1256

9 PFI1240c prolyl-t-RNA synthase, putative 1241

9 PFL1120c DNA GyrAse a-subunit, putative 1241

9 PF10_0053 tRNA ligase, putative 1241

12 PFL0770w seryl-tRNA synthetase, putative 1236

12 PF07_0129 ATP-dept. acyl-coa synthetase 1236

12 PFE0475w asparagine — t RNA ligase, putative 1236

12 PF10_0363 pyruvate kinase, putative 1236

12 PF13_0354 alanine—tRNA ligase, putative 1236

12 PFB0695c acyl-CoA synthetase 1236

12 PFE0205w ATP-dependent helicase, putative 1236

12 PF13_0077 DEAD box helicase, putative 1236

20 MAL13P1.281 glutamate—tRNA ligase, putative 1231

20 PF14_0348 ATP-dependent Clp protease proteolytic subunit, putative 1231

22 PF14_0112 POM1, putative 1221

23 PF11_0174 hypothetical protein 1216

23 PF08_0108 pepsinogen, putative 1216

23 PFL2395c dimethyladenosine transferase, putative 1216

23 PFE0195w P-type ATPase, putative 1216

Top targets according to the search criteria shown in Query 7 of Figure 2. Proteins shown are likely to (A) be good drug targets, (B) be amenable to crystallization, and
(C) reside in the apicoplast. Targets mentioned in the text are italicized.
doi:10.1371/journal.pntd.0000804.t007
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by comparing their amino acid sequences to those of known drug

targets in the StARLITe/ChEMBL database [50]. The sequence

similarity analysis was performed using BLAST; a helminth

protein was considered druggable if (A) it is $80% of the length of

the corresponding druggable target, (B) it has an amino-acid

sequence that aligns with $80% of the druggable target, and (C)

the BLAST expectation value of the alignment is less than 10210

(database size: 11,508 genes for B. malayi, 13,331 genes for S.

mansoni). In addition, proteins’ functional importance in helminths

was inferred from knockout data taken from their orthologs in C.

elegans and D. melanogaster (see Materials and Methods and Queries

10 and 11 of Figure 2). Being able to connect the helminth

proteins to similar proteins in other species was thus critical in

allowing us to evaluate their potential as drug targets.

Our strategy of relying heavily on orthology and sequence

similarity to rank helminth targets is broadly similar to those used

by Kumar et al. [6] to rank Brugia targets and by Caffrey et al. [3] to

rank Schistosoma targets. However, these authors sought targets that

met each of several desired criteria (Boolean ‘‘AND’’); for

example, Kumar et al. only considered Brugia proteins with

orthologs in C. elegans but not in humans, and whose absence

causes deleterious phenotypes (according to RNAi of C. elegans

orthologs). In contrast, we again used the ‘‘weighted union’’

approach to avoid premature elimination of any proteins from

consideration as targets. Kumar et al. also took a distinct approach

to druggability, rewarding proteins with domains targeted by

compounds obeying the Lipinski ‘‘Rule of 5’’ [51] and having EC

numbers associated with druggability. Additionally, Kumar et al.

penalized proteins for hydropathicity (which reduces the ease of

recombinant expression) and rewarded them for being expressed

(according to a small dataset of expressed sequence tags, or ESTs,

encompassing 250 genes); in contrast, we gave additional points to

all proteins having EC numbers (and therefore presumed to be

enzymes), 3D structural models, and/or bibliographic references.

A comparison of our helminth prioritizations (Tables 10 and 11)

with those of Kumar et al. [6] and Caffrey et al. [3] reveals

Table 8. Possible T. cruzi drug targets likely to be important in intracellular survival.

Ranking Gene name Gene product Weight

1 Tc00.1047053508111.30 glutamate dehydrogenase, putative 466

1 Tc00.1047053510879.80 serine acetyltransferase, putative 466

1 Tc00.1047053504013.40 serine acetyltransferase, putative 466

4 Tc00.1047053507875.20 glutamate dehydrogenase, putative 456

5 Tc00.1047053511277.600 hypothetical protein, conserved 436

6 Tc00.1047053510187.100 glucokinase 1, putative 421

7 Tc00.1047053503745.30 ascorbate-dependent peroxidase, putative 416

8 Tc00.1047053506193.60 ascorbate-dependent peroxidase, putative 406

8 Tc00.1047053507993.160 hypothetical protein, conserved 406

8 Tc00.1047053503749.5 pyrroline-5-carboxylate synthetase-like protein, putative 406

8 Tc00.1047053508699.120 dipeptidyl-peptidase, putative 406

8 Tc00.1047053509205.120 hypothetical protein, conserved 406

13 Tc00.1047053509073.70 phosphatidate cytidylyltransferase-like protein, putative 396

13 Tc00.1047053508601.141 dipeptidyl-peptidase, putative 396

13 Tc00.1047053508707.140 phosphatidate cytidylyltransferase-like protein, putative 396

16 Tc00.1047053509287.20 protein kinase, putative 386

16 Tc00.1047053506577.60 hypothetical protein, conserved 386

16 Tc00.1047053506953.30 protein kinase, putative 386

19 Tc00.1047053506839.60 tyrosine specific protein phosphatase, putative 381

19 Tc00.1047053506737.20 protein kinase, putative 381

19 Tc00.1047053511277.210 peroxisomal enoyl-coa hydratase, putative 381

19 Tc00.1047053508717.10 tyrosine specific protein phosphatase, putative 381

19 Tc00.1047053508637.90 phosphoglucomutase, putative 381

24 Tc00.1047053506725.20 hypothetical protein, conserved 376

24 Tc00.1047053508461.80 prostaglandin F2alpha synthase 376

24 Tc00.1047053506577.120 sterol C-24 reductase, putative 376

24 Tc00.1047053511761.60 hypothetical protein, conserved 376

24 Tc00.1047053507617.9 prostaglandin F2alpha synthase 376

24 Tc00.1047053508955.20 hypothetical protein, conserved 376

24 Tc00.1047053507089.170 hypothetical protein, conserved 376

24 Tc00.1047053506679.130 hypothetical protein, conserved 376

24 Tc00.1047053507709.60 hypothetical protein, conserved 376

Top targets according to the search criteria shown in Query 8 of Figure 2. Targets mentioned in the text are italicized.
doi:10.1371/journal.pntd.0000804.t008
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relatively little concordance. Among our top 200 Brugia targets,

none are also among the top 200 as ranked by Kumar et al. (see

Supplementary Table S1 of [6], also available at http://tdrtargets.

org/published/browse/282). This lack of overlap is likely due in

part to (A) our emphasis on druggability, as inferred from sequence

similarity against targets in the ChEMBL database, and (B) the fact

that we didn’t penalize proteins with human orthologs (see

Discussion subsection ‘‘No List is Canonical’’). By adding two

conditions to the weighted union to penalize proteins with

orthologs in human and in mouse (with weights 240 and 220,

respectively), some overlap between both lists can be observed:

among our top 200 targets, 32 are also among the top 200 as

ranked by Kumar et al. One unique aspect of our list is that it

includes four tRNA synthetases among the top 39 proteins. These

enzymes have been proposed as drug targets in Brugia, and are also

considered good drug target candidates in other parasites such as

trypanosomes [52], since they must be essential but often have

major structural differences with respect to the human orthologs.

The list of 57 recommended Schistosoma targets generated by

Caffrey and colleagues (see Table S1 of [3], also available at http://

tdrtargets.org/published/browse/247) includes 18 targets they

considered to be of the highest priority because they are druggable,

are expressed in relevant life-cycle stages, yield deleterious

phenotypes, and are homologous to proteins with solved crystal

structures including co-crystallized ligands. Of these 18 targets,

eight rank within our 170 top Schistosoma targets. An obvious

difference between the two lists is that ours includes nine tubulins

among the top 23 proteins. The prominence of the tubulins is

consistent with beta-tubulin’s validation as a helminth drug target

[53]. A number of ATPases also appear among our top targets. The

top-ranked target in our list is the alpha (catalytic) subunit of a Na+/

K+ ATPase (Smp_015020), which in mammals (and probably also

in schistosomes) is the target of ouabain and other cardiac glycosides

[54]. This target does not appear in the list of 57 targets published

by Caffrey et al.; however, the beta subunit of this or a closely related

Na+/K+ ATPase (Smp_124240) is ranked #52 in this study. Other

attractive targets include a putative extracellular-signal-regulated

kinase (ERK, Smp_142050), and a putative HMG-CoA reductase

(Smp_138590), which is the target of cholesterol-lowering drugs like

mevinolin [55].

Discussion

Stability of Ranked Lists
A relevant question for any ranked list of targets using any

strategy is: how different would this list be if the weight given to a

certain attribute is changed? Using the M. tuberculosis queries whose

results are in Table 5, we analyzed the robustness of the final ranked

Table 9. Leading persistent-stage M. tuberculosis targets.

Ranking Gene name Gene product Weight

1 Rv0885 conserved hypothetical protein 762

2 Rv3290c probable l-lysine-epsilon aminotransferase lat (l-lysine aminotransferase) (lysine 6-aminotransferase) 752

3 Rv2004c conserved hypothetical protein 717

4 Rv2780 secreted l-alanine dehydrogenase ald (40 kda antigen) (tb43) 714

5 Rv2628 hypothetical protein 679

6 Rv2626c conserved hypothetical protein 657

6 Rv2623 conserved hypothetical protein tb31.7 657

8 Rv3340 probable o-acetylhomoserine sulfhydrylase metc (homocysteine synthase)
(o-acetylhomoserine (thiol)-lyase) (oah sulfhydrylase) (o

631

9 Rv2497c probable pyruvate dehydrogenase e1 component (alpha subunit) pdha
(pyruvate decarboxylase) (pyruvate dehydrogenase) (pyruvic deh

615

10 Rv2629 conserved hypothetical protein 613

11 Rv2627c conserved hypothetical protein 610

12 Rv3130c conserved hypothetical protein 605

13 Rv2035 conserved hypothetical protein 602

14 Rv2624c conserved hypothetical protein 601

15 Rv0678 conserved hypothetical protein 599

16 Rv2032 conserved hypothetical protein acg 596

17 Rv1813c conserved hypothetical protein 594

18 Rv3131 conserved hypothetical protein 591

19 Rv2630 hypothetical protein 580

20 Rv0251c heat shock protein hsp (heat-stress-induced ribosome-binding protein a) 579

21 Rv1285 probable sulfate adenylyltransferase subunit 2 cysd 576

22 Rv2830c conserved hypothetical protein 569

23 Rv0275c possible transcriptional regulatory protein (possibly tetr-family) 566

24 Rv2711 iron-dependent repressor and activator ider 565

25 Rv3126c hypothetical protein 556

Top targets according to the search criteria shown in Query 9 of Figure 2. In essence, previous analyses by Hasan et al. [4] and Murphy & Brown [7] were combined.
doi:10.1371/journal.pntd.0000804.t009
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list, by selecting one attribute at a time and changing its weight from

a very low (negative) score to a very high (positive) score. To assess

the change observed in the ranked list we counted the number of

curated targets (i.e., those with some level of validation) observed

within the top 200 targets in the ranked list and used this value as

our objective function (see panel B in Figure 3). Using this measure,

we observed that a high score is obviously needed for those

attributes that are enriched in validated targets (see panel A in

Figure 3) in order to find well-known targets at the top of the list.

This is also true for attributes that are not independent of these

‘‘good’’ attributes (e.g., availability of 3D structures). In contrast,

changing the weight of attributes that are not expected to be

enriched in validated drug targets (e.g., low molecular weight) does

not affect the final result. In these cases, the final lists are all

different, but they are consistent in having the highest ranks of the

list being enriched in validated targets. In general, of course, targets’

rankings within a list can be increasingly stabilized by including

more and more relevant criteria in the prioritization.

Table 10. Rankings of possible Brugia malayi drug targets.

Ranking Gene name Gene product Weight

1 Bm1_35945 Protein kinase domain containing protein 190

2 Bm1_25205 leucyl-tRNA synthetase, putative 188

2 Bm1_46445 vacuolar proton pump, putative 188

2 Bm1_31340 vacuolar proton pump, putative 188

5 Bm1_38680 tubulin alpha chain - mouse, putative 178

5 Bm1_20715 tubulin alpha-2 chain, putative 178

5 Bm1_25035 Tubulin alpha-2 chain, putative 178

5 Bm1_30720 KE2 family protein 178

5 Bm1_39900 Sex muscle abnormal protein 5, putative 178

5 Bm1_32860 Valyl-tRNA synthetase, putative 178

5 Bm1_14145 protein phosphatase PP2A regulatory subunit, putative 178

5 Bm1_44205 V-type ATPase 116 kDa subunit family protein 178

5 Bm1_48675 GTP-binding regulatory protein Gs alpha-S chain, putative 178

5 Bm1_28835 Transcription initiation factor IIA, gamma subunit, helical domain containing protein 178

5 Bm1_55400 Tubulin alpha-2 chain, putative 178

5 Bm1_46210 Protein kinase domain containing protein 178

5 Bm1_43680 T-complex protein 1, alpha subunit, putative 178

5 Bm1_30260 Tubulin alpha chain, putative 178

5 Bm1_44630 oxidoreductase, short chain dehydrogenase/reductase family protein 178

20 Bm1_10280 transketolase, putative 173

21 Bm1_20815 integrin-linked kinase, putative 170

21 Bm1_54155 Probable dimethyladenosine transferase, putative 170

23 Bm1_19675 Serine/threonine protein phosphatase F56C9.1 in chromosomeIII, putative 168

23 Bm1_50960 vacuolar ATP synthase catalytic subunit A, osteoclast isoform, putative 168

23 Bm1_52850 mannose-6-phosphate isomerase, class I family protein 168

23 Bm1_12165 methionyl-tRNA synthetase, putative 168

23 Bm1_48165 Adenosylhomocysteinase, putative 168

23 Bm1_32455 mannose-6-phosphate isomerase, class I family protein 168

23 Bm1_22825 Protein prenyltransferase alpha subunit repeat containing protein 168

23 Bm1_14125 proteasome subunit beta type 1, putative 168

23 Bm1_17330 succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial, putative 168

23 Bm1_45960 ATP synthase beta chain, mitochondrial precursor, putative 168

23 Bm1_12875 Serine/threonine protein phosphatase PP1-beta catalytic subunit, putative 168

23 Bm1_41830 Alanyl-tRNA synthetase, putative 168

23 Bm1_38390 protein phosphatase 2A., putative 168

23 Bm1_24805 proteasome subunit beta type 3, putative 168

23 Bm1_41940 Glyceraldehyde 3-phosphate dehydrogenase, putative 168

23 Bm1_41510 FAD binding domain containing protein 168

23 Bm1_51640 Proteasome A-type and B-type family protein 168

Top targets according to the search criteria shown in Query 10 of Figure 2. Targets mentioned in the text are italicized.
doi:10.1371/journal.pntd.0000804.t010
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Old Targets Versus New Targets
In analyzing target candidates, we often wonder what sort of

mix of well-studied and not-so-well-studied proteins might be most

‘‘desirable’’ at the top of a ranked list. On the one hand, having

well-known targets or targets of known drugs at the top of our lists

offers some assurance that our search strategies are reasonable

(i.e., they serve as ‘‘positive controls’’ of the strategy). On the other

hand, a method that only identifies well-established targets would

not serve the important purpose of suggesting novel targets, so the

presence of novel (even ‘‘hypothetical’’) targets near the top of a list

is also welcome. With the deliberate exception of Table 7, our lists

reflect a desire to spotlight both previously validated and newly

emerging targets.

In addition to trying to achieve a mix of new and established

targets in prioritization lists, users need also to robustly consider

which established targets they should classify as ‘‘successful.’’ Some

targets enjoy long-held high esteem within the research commu-

nity in the absence of any clinical validation, while other proteins,

particularly for the organisms being studied here, are targets of

clinically used drugs whose product profiles are unlikely to be

acceptable in future drug development programs.

False Negatives
Previous bioinformatic analyses of drug targets [4] have

suggested that certain established targets never rank highly unless

given artificial boosts in points for that specific purpose. Examples

of these ‘‘false negatives’’ are also apparent in the lists presented

here. For instance, cytochrome b is the known target of the

antimalarial drug atovaquone [56], yet it ranks in the bottom 25%

of targets represented by Table 4 because it has transmembrane

Table 11. Rankings of possible Schistosoma mansoni drug targets.

Ranking Gene name Gene product Weight

1 Smp_015020 na+/k+ atpase alpha subunit, putative 120

2 Smp_059790.2 transketolase, putative 119

2 Smp_059790.1 transketolase, putative 119

4 Smp_040790 cyclophilin B, putative 113

5 Smp_040970.1 vacuolar proton atpases, putative 112

5 Smp_027920 tubulin alpha chain, putative 112

7 Smp_016780 tubulin alpha chain, putative 109

8 Smp_103140 alpha-tubulin, putative 106

8 Smp_029390 ATP synthase subunit beta vacuolar, putative 106

10 Smp_106150 carbamoyl-phosphate synthase large chain, putative 103

10 Smp_142050 erk1/2, putative 103

10 Smp_071840 6-phosphogluconate dehydrogenase, putative 103

10 Smp_030730 tubulin beta chain, putative 103

14 Smp_059340.1 Guanine nucleotide-binding protein G(s) subunit alpha (Adenylate
cyclase-stimulating G alpha protein), putative

102

14 Smp_090120.2 alpha tubulin, putative 102

14 Smp_090120.1 alpha tubulin, putative 102

14 Smp_059340.2 Guanine nucleotide-binding protein G(s) subunit alpha (Adenylate
cyclase-stimulating G alpha protein), putative

102

14 Smp_043670.1 6-phosphofructokinase (Phosphofructokinase) (Phosphohexokinase), putative 102

14 Smp_155270 hydroxymethylglutaryl-CoA synthase, putative 102

20 Smp_079960 tubulin beta chain, putative 100

20 Smp_035760 tubulin beta chain, putative 100

20 Smp_078040 tubulin beta chain, putative 100

20 Smp_079970 tubulin beta chain, putative 100

24 Smp_165490 protein phsophatase-2a, putative 99

24 Smp_097590 valyl-tRNA synthetase, putative 99

24 Smp_096020.2 adenosylhomocysteinase, putative 99

24 Smp_096020.1 adenosylhomocysteinase, putative 99

24 Smp_028990.1 protein phosphatase-1, putative 99

24 Smp_096020.3 adenosylhomocysteinase, putative 99

24 Smp_028440.1 adenosylhomocysteinase, putative 99

24 Smp_028440.3 adenosylhomocysteinase, putative 99

24 Smp_034490 proteasome subunit beta type 6,9, putative 99

24 Smp_138590 hmg-CoA reductase, putative 99

Top targets according to the search criteria shown in Query 11 of Figure 2. Targets mentioned in the text are italicized.
doi:10.1371/journal.pntd.0000804.t011
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domains (making recombinant expression difficult), is not easy to

assay in isolation, lacks a known crystal structure, and so on.

Likewise, certain targets of antihelminth drugs – such as the

acetylcholine and GABA receptors, glutamate-gated chloride

channel, and SLO-1 potassium channel [57,58] – do not appear

near the top of our helminth lists. There are several possible (non-

exclusive) explanations for this. First, some drugs were found

through phenotypic screens and their targets do not meet many of

the criteria required in a target-based approach, and thus might

not be expected to rank highly. Second, current target prioritiza-

tion strategies are generally based on the assumption that drugs

will cause a loss-of-function phenotype, but most existing helminth

drugs lead to gain-of-function phenotypes [57]. Ranking proteins

according to their potential as gain-of-function targets might be a

fruitful direction of future work. Finally, it is conceivable that the

total number of viable drug targets vastly exceeds the number that

have been clinically validated, such that the position of many non-

validated targets ahead of some validated ones is appropriate.

False Positives
The failure of some validated targets to be highly ranked in our

lists is not particularly surprising or troublesome, as discussed

above. A more interesting issue is that of ‘‘false positives,’’ i.e.,

proteins that do rank highly but have not been validated as drug

targets despite considerable effort. For instance, the Leishmania

adenosine kinase ranks among the top 25 proteins in Tables 2 and

3, yet turns out to be nonessential in promastigotes [59]. Similarly,

the Plasmodium enoyl-ACP reductase (FabI) ranks 2nd in Table 4,

yet is nonessential for blood-stage growth [60]. Among M.

tuberculosis proteins, pantothenate kinase (PanK or CoaA) is in

the top 100 of the Query 5 rankings (though not among the top 24

and thus not shown in Table 5), yet screens targeting this enzyme

yielded no leads active against wild-type M. tuberculosis cells (C. E.

Barry, personal communication). PanK activity in vivo appears to

be so far in excess of what is required for growth that killing M.

tuberculosis cells by inhibiting this enzyme is virtually impossible.

Although such examples can be seen as discouraging, we can

use them to ask whether the incidence of false positives can be

reduced through the use of additional datasets and search

strategies. The nonessesentiality of the Plasmodium FabI during

erythrocyte stages is perhaps suggested by the fact that expression

of the enzyme is neither high nor tightly regulated during the

erythrocyte life-cycle stages [61]. While TDRtargets.org does not

currently offer a metric for the periodicity of gene expression in

blood-stage Plasmodium, this could be added to future versions of

the database.

No List Is Canonical
The target rankings presented here are meant to be illustrative

rather than definitive. The lists presented here were sent to experts

on relevant neglected diseases for evaluation, and, predictably, we

encountered numerous reasonable differences of opinion. For

helminths, arguments were made both for and against penalizing

proteins with orthologs in humans. The presence of human

orthologs suggests an increased likelihood of toxicity in the host; on

the other hand, several existing drug targets do have human

orthologs. For M. tuberculosis, it was noted that existing drugs tend

to target information-processing enzymes (DNA and RNA

polymerase, DNA gyrase) rather than metabolic enzymes, so

searches for new drugs might pay special attention to that area.

Generally applicable suggestions included penalties for proteins

that are part of macromolecular complexes, since they are hard to

study in isolation, and for proteins of unknown function, since they

are hard to study with biochemical or biophysical methods.

Figure 3. The sensitivity of target rankings to changes in weighting. Using the M. tuberculosis genome as an example, we determined the
fraction of genes matching an attribute/query in a set of curated targets (validated chemically and/or genetically) and in the entire genome. (A) The
results are shown for each attribute used in Query 5 of Figure 2. Values are log(Observed/Expected), where Expected is the fraction of genes in the
genome that have the attribute and Observed is the fraction of curated targets that have the attribute. (B) We analyzed the stability of the final
ranked list when the weight of a single attribute is changed. As an indication of stability, we plot the percentage of curated targets among the top
200 genes as the weight of each attribute is changed from minus-100 to plus-200.
doi:10.1371/journal.pntd.0000804.g003
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In addition to legitimate differences of opinion among

researchers, the relative appeal of individual targets will continue

to change as additional data are gathered. Fortunately, the

infrastructure of TDRtargets.org is flexible enough to accommo-

date different individuals’ interests (as seen especially in the lists

focused on T. brucei glycolysis and Plasmodium apicoplasts) and the

incorporation of new data (most prominent in the rankings for the

helminths and for M. tuberculosis persistence). We therefore see

TDRtargets.org as a tool that individual scientists may use to

explore new research directions, rather than as a final arbiter of

proteins’ potential as drug targets.

As noted, target prioritization with TDRtargets.org or any other

computational method is probably most useful as a prelude to

(rather than a replacement of) laborious experimental follow-up

work. Experimental characterization of promising targets often

requires chemical inhibitors of target activity; therefore lists of

target-specific inhibitors would be of great value to the research

community. Though TDRtargets.org currently includes a prelim-

inary dataset of such inhibitor-target associations, future editions

of the database should offer major expansions and refinements of

this dataset.
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