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Abstract
Diseases caused by helminth parasites remain the most neglected of tropical
diseases. Consequently, discovery of new therapeutics, diagnostics, and vaccines
for helminth parasites has been slow to progress. This is in part because anthelmintic
discovery has relied upon biological screens – either genetic or chemical – inmodel as
well as in parasitic worms and these approaches are limited in a number of ways. For
example, genetic manipulation (such as RNA interference) is still not available for
many helminth parasites, and, therefore, genomic-scale experimental target iden-
tification and validation studies remain challenging. Also, for many parasitic
helminths, the life cycle of the parasite cannot be maintained in vitro, thus limiting
experimental screens. To facilitate discovery of new targets, a genomics-based
approach has been gaining traction and will be supported by the increasing numbers
of complete genome sequences available for helminth parasites. The availability of
these genome sequences is expected to support a wide variety of genomic-scale
studies that will generate functional datasets regarding the expression, structure,
phylogeny, essentiality, and validation of genes from parasite stages relevant to
disease. In addition, target identification will be facilitated by mapping of functional
data through orthology from model organisms like Caenorhabditis elegans. In order
to realize the full potential of genomics-based target discovery, various func-
tional datasets need to be integrated with genome sequence information in a
structured format that can be easily accessed and mined for anthelmintic target
discovery. This chapter discusses advances in genomics-driven target discovery for
helminths, and highlights the increasing contribution of data repositories such as
TDR Targets and WormBase to anthelmintic target discovery. The search strategies
implemented in the TDR Targets database will be used to illustrate the utility of
comparative genomics to discover potential helminth drug targets and identify
missing functional datasets in helminth parasites that will greatly improve target
identification.
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Introduction

In the era of genome sequencing, it is inevitable that comparative genomics plays a
major role in driving biological and therapeutic discoveries. This is especially true
for less-studied organisms, like the helminth parasites, that are not easily ame-
nable to experimental manipulation in the laboratory. Helminth parasites (nema-
todes, cestodes, and trematodes) are a diverse group of invertebrate animals with
complex life cycles during which they infect various animal hosts. The disease
burden resulting from human helminth infections is enormous. Estimates from
the World Health Organization (WHO) indicate that more than 2 billion people
world-wide are at risk of acquiring such infections (http://www.who.int/tdr/svc/
diseases/helminths). Few effective drugs are available to treat and control hel-
minth infections [1, 2] (see also Chapters 14 and 20), and there are already a
significant number of documented cases of resistance in veterinary hel-
minths [3, 4]. In addition, recent reports suggest that resistance to some anthel-
mintic treatments in humansmight be emerging [5, 6]; thus, alternate therapeutics
are urgently required.

Althoughwhole-organism (phenotypic) screening approaches have dominated the
drugdiscovery landscape for helminth parasites, target-based approaches are gaining
ground, being supported by a number of advances (see also Chapters 1 and 8).
(i) There is the increased availability of genome sequence information for a number
of helminth parasites, which is supported by parasitic helminth genome initiatives
such as those of the Wellcome Trust Sanger Institute and Washington University�s
Genome Sequencing Center [7, 8]. (ii) There has been a steady increase in genome-
wide studies on expression profiling (primarily by expressed sequence tag (EST)
library sequencing and microarray analysis [9–12]), proteomics [13–15], and valida-
tion of function and phenotype (most often by RNA interference (RNAi) [16]; see also
Chapters 6 and 7). In fact, recent advances in deep sequencing of both genomic and
mRNAmean that therewill not be a shortage of sequence data for helminth parasites.
Rather, the focus is now shifting towards developingmethods and tools to effectively
integrate and use these datasets in order to understand the biology of helminths and
support anthelmintic discovery.

Traditional genome repositories such as organism-specific genome databases and
the National Center for Biotechnology Information GenBank [17] serve the essential
function of hosting raw genome sequence data and associated genomic or gene-
specific annotations, generated mostly by standardized computational pipelines.
With the increasing availability of different types of genomic-scale experimental
datasets, it is now standard practice by most genome servers to integrate these
datasets and allow end-users to query the available data in order to retrieve desired
genes. Moreover, genome servers such as GeneDB [18] and EuPathDB [19], which
host genome data for various eukaryotic pathogens, have implemented tools to
perform comparative genomics analysis of related species. Comparative genomics is
especially important in the case of helminth pathogens for which the functional
annotation of available genomes suffers from a relative lack of robust experimental
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tools. For example, the highly annotated genome sequence information available for
Caenorhabditis elegans in WormBase [20] can be used to inform gene annotation for
orthologs in parasitic helminths. In fact, this strategy has been already used to
identify potential target genes in Brugia malayi [21] and Schistosoma mansoni [22].
Implementing a similar workflow, but as part of a curated database, will allow for the
continual updating of underlying datasets.

We outline how in silico comparative genomics can be employed to enhance our
understanding of helminth biology and assist in the discovery of novel drug and
vaccine targets. Specifically, grouping proteins by orthology [23] has been useful to
map functional genomic datasets such as metabolic pathways and genetic phe-
notypes from the model organism, C. elegans, to parasitic helminths. This chapter
also reviews how genome-wide annotation that is integrated into genome databases
can be used to identify and prioritize target genes. Finally, we provide a brief
overview of the WHO�s TDR Targets database [24], which integrates a number of
datasets mapped to the genomes of different pathogens, including helminths, and
provides the necessary informatics tools to prioritize target genes. Illustrative
examples of target prioritization for B. malayi, S. mansoni, Onchocerca volvulus, and
Wuchereria bancrofti will be demonstrated using the tools implemented in TDR
Targets.

Availability of Genome Sequence Information for Parasitic Helminths

In addition to the model nematode, C. elegans [25], which was the first nematode
genome to be sequenced, a handful of other parasitic worm genomes, including
B. malayi [26], S. mansoni [27], and Trichenella spiralis [28], have been sequenced.
Table 3.1 provides a list of worms, most of them parasitic in animals, which are
currently under study by various sequencing centers. However, there are signif-
icant challenges ahead in terms of producing high quality genome annotation,
making data accessible to the community, and enabling functional studies.
Genome repositories and databases will be important here. For helminths, the
Nematode.Net database [29] maintains a collection of sequences, both genomic and
EST-based, and provides various functionalities such as functional classification,
ortholog identification, and expression data analysis. Although this database also
includes data for C. elegans, more sophisticated phenotype data (based on targeted
gene disruption or RNAi studies) for C. elegans can be mined from WormBase [20]
and used to identify potential targets in parasitic helminths (see Figure 3.1). Also,
the GeneDB [18] and SchistoDB [30] databases provide access to genome sequence
annotation for a number of Schistosoma species. The TDR Targets database
contains genome information for B. malayi and S. mansoni, and integrates a
variety of datasets (see below), including orthology-based mapping of C. elegans
phenotype data, to aid in the identification of potential drug targets. The TDR
Targets database will incorporate genome information for other parasitic worms as
data become available.
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Overview of Genome Annotation Datasets that Aid Target Identification

In addition to storing the sequence information for any given genome, the respective
genome databases also provide a collection of annotations describing several different
features either on a genomic-scale or in a gene/protein-specific manner. Some of the
annotations are gathered automatically (e.g., identificationof open reading frames and
their protein domains/properties to predict function), butmanyothers are culled from
experimental data and have to be constantly curated as the data become available. The
latter set includes data that describe gene/protein expression and regulation, genetic
variations, protein structure, gene essentiality, phenotypic/functional responses to
genetic/chemical alterations of gene structure or function, ligand/inhibitor interac-
tions, and any other relevant information (see Table 3.2 for a list of datasets that can be
mapped to a sequenced genome). Although the data available from automated
genome annotations are very similar in format and accessibility across various
genomes, thequality anddepth of coverage of experimental data varieswidely between
organisms. This is especially true for helminths in that the data available forC. elegans
aremuchmore comprehensive than those for parasitic worms. This is, in part, due to
the patchy genome information available for parasitic worms, but also due to them

Table 3.1 Sequence data availability for helminth organisms (as of March 2012).

Organism type Number of
species with
EST dataa)

Number of species with
genome sequence dataa)

Number of
species with RNA
sequence dataa)

Trematoda – flukes 3 2 (Sman; Sjap) 2 (Sman; Sjap)
Cestoda – tapeworm 2 4 (Egra; Emul; Hmic; Tsol) 3 (Egra; Emul; Hmic)
Nematoda – clade I 4 2 (Tspi; Tmur) —

Nematoda – clade III 6 4 (Bmal; Asuu; Alum;
Ovol)

1 (Asuu)

Nematoda – clade IV a/b 18 4 (Srat; Gpal; Minc; Hgly) 2 (Srat; Gpal)
Nematoda – clade V 13 13 (Caenorhabditis spp;b)

Acan; Acey; Aduo; Conco;
Dviv; Name; Oden; Oost;
Hcon; Nbra; Tcir; Ppac)

3 (Caenorhabditis spp;b)

Anca: Conc; Dviv; Hbac;
Name; Nbra; Oden; Oost;
Tcir; Tcol)

The table summarizes the various helminth species (both parasitic and nonparasitic) for which EST,
genome, and RNA sequence data is either available or will soon be available. Sman, Schistosoma
mansoni; Sjap, Schistosoma japonicum; Egra,Echinococcus granulosus; Emul, Echinococcusmultilocularis;
Hmic, Hymenolepis microstoma; Tsol, Taenia solium; Tspi, Trichinella spiralis; Tmur, Trichuris muris;
Bmal, B. malayi; Asuu, Ascaris suum; Alum, Ascaris lumbricoides; Ovol, Onchocerca volvulus; Srat,
Strongyloides ratti; Gpal,Globodera pallida; Minc,Meloidogyne incognita; Hgly,Heterodera glycines; Acan,
Ancylostoma caninum; Acey, Ancylostoma ceylanicum; Aduo, Ancylostoma duodenale; Conco,
Cooperia oncophora; Dviv, Dictyocaulus viviparus; Hbac, Heterorhabditis bacteriophora; Name,
Necator americanus; Oden, Oesophagostomum dentatum; Oost, Ostertagia ostertagi; Tcir,
Teladorsagia circumcincta; Tcol, Trichostrongylus colubriformis; Hcon,Haemonchus contortus; Nbra,
Nippostrongylus brasiliensis; Tcir, Teladorsagia circumcincta; Ppac, Pristionchus pacificus.
a) Indicates both completed andprojects in progress; data obtained fromNematode.Net, theWellcome

Trust Sanger Institute, the NCBI Genome and Gene Expression Omnibus Databases, and [8].
b) Includes multiple species of Caenorhabditis.
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being less experimentally tractable than C. elegans. Thus, it is useful to implement
orthology-based transient mapping of annotation across closely related species to
identify putative target genes, as described in the following section.

Orthology-Based Annotations and Comparative Genomics

Orthologs are defined as homologous proteins that are separated by a speciation
event and are considered to be functionally conserved across species. Orthologous
proteins may be estimated by reciprocal (two-way) best hits using BLAST. Precom-
puted ortholog pairs from more than 100 different species have been clustered into
ortholog groups which can be accessed from the OrthoMCL database [23]. For
example, Figure 3.1a illustrates how the RNAi phenotype data available forC. elegans
genes can bemapped to orthologs inB.malayi andS.mansoni. Of the 4710 geneswith
observed RNAi phenotypes in C. elegans (available in WormBase [20]), 2242 are

Figure 3.1 Mapping RNAi phenotype data
using orthology. (a) The illustration shows how
a significant number of C. elegans genes with
orthologs in B. malayi and S. mansoni are also
associated with at least one observed RNAi
phenotype. Using this mapping information,

desirable phenotypic data can be used to select
for target genes from parasites. (b) General
informatics pipeline used for transientmapping
of phenotypic data from C. elegans to parasitic
organisms.
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orthologous to 3064 Schistosoma genes and 3058 are orthologous to 3377 Brugia
genes, with a large degree of overlap between orthologs of the twoparasites. Similarly,
the other annotations listed in Table 3.2 can be transiently mapped onto the genome
of interest using information from a suitable model organism. However, the
approach has some drawbacks. For example, whereas mapping enzymes and
metabolic pathways using orthology is most likely to be correct, mapping genetic
essentiality data can be misleading as a large proportion of these data tends to be
organism-specific (see [31] and references therein). Therefore, in using such data-
sets, one needs to be familiar with the biology of each species and the suitability of the
mapped data for a particular organism. Nevertheless, comparing orthologous genes
across species is important when performing comparative genomics.

In addition to transient annotation of genomic-scale data as discussed above, the
identification of orthologs enables phylogenetic profiling of the genome of interest.
The presence or absence of genes in the host versus parasite genomes often provides
a first-stage filter to narrow down the set of target genes of interest for further
analysis [32]. As an example, one may want to select B. malayi genes that are absent

Table 3.2 Genome annotation data made available through databases.

Annotation type Annotated data

Automatic annotation and
sequence based predictions

Gene ID

Product name
Gene/protein sequence
Protein length in amino acids
Molecular weight
Isoelectric point
Transmembrane domain
Signal/transit sequences
Protein domain by blast similarity
Gene ontology predictions
Pathway mapping and enzymes
Metabolite mapping
Protein structure model
Phylogeny and orthology
Druggability

Experimental evidence
based annotation

Expression: anatomical and life cycle stage specificity

Enzymatic activity and kinetics
Metabolite and inhibitor ligand binding
Recombinant availability
Protein structure data
Gene essentiality (knockout/down): life cycle stage specificity
Phenotype (Genetic/Chemical): life cycle stage specificity

A variety of annotations, either from sequence-based prediction or based on experimental evidence,
are made available through genome databases. For parasitic helminths in particular, the lack of
genome wide experimental datasets needs to be addressed.
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from free-living nematodes, but are present in parasitic nematodes. Such a selection
is likely to enrich for genes that are essential for parasitism and hence of interest as
targets. Ortholog clustering also helps to identify gene duplications that can con-
tribute to functional redundancy and genetic variation, sometimes even within
different strains (isolates) of the same species [33]. Therefore, implementing
orthology-based querying as part of database infrastructure can be of tremendous
use to select target genes with the desired properties. TDR Targets implements this
functionality making use of ortholog groupings already available in the OrthoMCL
database. In the following sections, examples of target identification through
orthology for various parasitic helminths are presented.

Predictions of Essentiality

A major task in the genome-wide prediction of promising drug targets for anthel-
mintics is the identification of essential genes [34, 35]. Essential targets are those for
which inhibition of protein function is most likely to result in death, a severe
phenotype(s), or a significant loss offitness. These are not the only imaginable targets
of anthelmintics. Indeed, chemical modulation of nonessential genes is a well-
trodden path to eliminating helminths, such as agonists of nonessential genes that
induce loss of muscle control and, therefore, worm expulsion (see Chapter 14 for
examples). Identification of essential genes does enjoy one advantage in that
resistance will not arise due to loss of function or deletion – resistance to some
drugs in other pathogens involves deletion of nonessential genes including
melarsaprol resistance in Trypanosoma brucei [36] and capreomycin resistance in
Mycobacterium tuberculosis [37].

Although advances are being made in reverse genetics tools for pathogenic
helminths, working either on a genome-wide scale or at the level of the individual
gene, these are either lacking or rudimentary. Therefore, inference of essentiality
through bioinformatic means is desirable and several potential methods are avail-
able, as discussed below. C. elegans has been employed as a model to suggest
essentiality in important pathogenic nematodes, such as B. malayi [21], and it may
also be useful to determine essentiality in Onchocerca spp. [38] and Strongyloides
spp. [39]. Also, and as discussed above, TDR Targets allows the identification of
Brugia genes with essential orthologs inC. elegans. The caveats to such inferences are
that the parasitic lifestyle may allow these species to dispense with genes that are
essential in free-living nematodes, whereas other molecules involved in host–
pathogen interactions become newly essential. For helminths other than nematodes,
it is less obvious whether essentiality can be inferred from functional data for C.
elegans alone, and whether other animal models, such as the fruitfly, Drosophila
melanogaster, can (should) be incorporated. A case in point is the analysis by Caffrey
et al. [22] that filtered gene disruption data for both C. elegans and D. melanogaster to
predict essential S. mansoni genes.

Helminth genes most likely to be essential are those that are shared by a greater
number of evolutionarily diverse organisms [40]. One strategy, therefore, to
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determine essentiality in parasitic helminths is to focus on just these �essential�
helminth genes that have orthologs in other phyla and are supported, where possible,
by experimental data actually demonstrating essentiality. An unfortunate corollary of
this is that helminth genes that are absent from the human host are less likely to be
essential than those that are shared. Maximizing prediction of essentiality by
choosing evolutionarily conserved proteins may therefore conflict with eventually
developing ligands (inhibitors) that selectively target parasite proteins. In practice,
therefore, these conflicting criteria must be balanced to identify targets that can be
selectively drugged, but which are still likely to be essential. Also, as discussed by
Caffrey et al. [22], it is often the case that selectivity and potency of any ligand
eventually comes down to a range of parasitological and physiological factors, and
smart medicinal chemistry to avoid �off-target� toxicity to the host.

An alternative to simply porting essentiality from experimentally characterized
orthologs onto helminth genes is to rank essentiality based on gene product
properties that are predictive of essentiality. One such approach is essentiality
prediction from network connectivity. Proteins with larger numbers of interactions
– called hubs – aremore likely to be essential across several eukaryote groups [41, 42].
This observation informed the successful prediction and verification of essentiality in
nematodes using highly connected genes in WormNet, which is a network that
incorporates protein–protein interactions as well as other data types including
coexpression, co-occurrence of gene names in text, and genetic interactions [43].
Future systems biology data from parasitic helminths could potentially be integrated
into similar networks to improve and extend such network-based predictions.

Another property of gene products that can be used to infer essentiality is their
position in metabolic networks. A number of genome-wide methods such as
chokepoint analyses are available to predict essentiality and the curated Schistosoma
metabolic network Schistocyc [30] or the NemaPathmapping of KEGGpathways [44]
are useful starting templates for such analyses that will hopefully be replicated in
other parasitic helminths.

Orthology-Based RNAi Phenotype Data Mapping Between C. elegans
and Parasitic Helminths

C. elegans has been an important model organism to inform both experimental and
comparative genomics studies with various parasitic helminths (see also Chapter 2).
Examples of target identification for both B. malayi and S. mansoni using phenotype
data available for C. elegans are published [20, 22, 45]. Here, we illustrate for
Onchocerca spp. and Wuchereria bancrofti how this approach can be applied even
in the absence of complete genome information (Figure 3.1b). In order to perform
this analysis, EST data for various Onchocerca spp. and W. bancrofti were obtained
from the NEMBASE4 database [46] that hosts ESTdata frommore than 60 nematode
species. The translated protein sequences for these ESTs were then used to identify
the corresponding C. elegans orthologs using the ortholog identification pipeline
implemented at the OrthoMCL database [23]. RNAi phenotypes for C. elegans genes
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obtained from the WormBase database were then mapped to the relevant ortholog
groups of Onchocerca spp. and W. bancrofti. A supplementary file containing the
results from this mapping exercise is available from TDR Targets using the link
http://tdrtargets.org/static/shanmugam-helminth-genomes/Table-III.xlsx. This file
lists all ortholog groups that contain at least one gene in C. elegans that has an
observed RNAi phenotype and at least one gene in Onchocerca orW. bancrofti. From
this list, parasite genes mapped to select RNAi phenotypes can be identified and
pursued further as potential targets. As ever, downstream experimental work is
required to validate the essentiality of these targets in these species.Once the genome
sequence of these parasites becomes integrated into the TDR Targets database,
genomic-scale mapping of the above exercise can be carried out. Using the workflow
and functionalities implemented in TDR Targets (see Figure 3.2 and the discussion

Genome sequence information
Gene/protein specific automated annotation (length, molecular weight,

signal peptide, transmembrane domains, etc.)

Orthology based mapping where applicable

Genomic scale functional
datasets (pathways,

functional annotation,
structure, expression,

phylogeny, genetic
variation, essentiality,

druggability etc.)

Genetic / chemical
phenotypes (target

specific knock out / knock
down and small molecule

screens)

Orphan phenotypes
(species or strain specific
genetic variants / small

molecule screens)

Datasets integrated into structured database for end user browsing, querying, prioritizing and exporting

Results of end user specified queries

Ranked list of targets prioritized for
downstream validation

Export / Share
with community

Adjust criteria
parameters to

optimize results

Upload new user
specific dataset for

combining with
others in the

database

Assign weights and combine results

Curation and community input

Figure 3.2 TDR Targets database structure
and workflow for prioritizing genes. This
scheme illustrates how various datasets
integrated into the TDR Targets database can be
used to identify andprioritize target genes.Note
that mapping data from orthologous genes in
other species, curation of published data, and

community input on selected targets are key to
making this process work. TDR Targets has
implemented a user-friendly database
infrastructure and easy-to-use informatics tools,
all of which aid in target identification. For
details of database functionality and case
scenarios, see [24, 45].
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below), we will next discuss the utility of genomic-scale datasets to identify targets of
interest.

The TDR Targets Database

TDRTargets facilitates target identification formajor tropical pathogens, includingB.
malayi and S. mansoni [24]. It contains genome information for all the pathogens
listed in the target search page, and also integrates a variety of functional datasets (see
Table 3.2) that facilitate the formulation of user-defined queries [45]. The various
informatics tools provided via an open-access web interface, allow users to browse
and query data, view and modify results, rank genes based on user-assigned weight
values for selected criteria, export data and share results. TDR Targets obtains
genome information for each species from various genome repositories like
EuPathDB,GeneDB,WormBase, andGenBank. Functional annotations are obtained
by a combination of methods, including orthology-based mapping of data across
species, curation of literature information, and generating in-house datasets in
collaboration with academic and industry partners. Figure 3.2 shows the general
workflow of how one may carry out a target selection exercise using TDR Targets.
First, the user searches for targets in the selected pathogen by formulating one or
more queries based on the available datasets. The result of these queries can then be
viewed as a list and exported as text or Excel files. The user can also manage queries
from the history page by combining themusing the union and intersection functions or
delete, export, rename, and view the criteria used to formulate the queries. As an
option, registered users can save the queries and publish the prioritized list of genes
on the website to share with others.

Two different strategies can be employed to prioritize target genes using TDR
Targets (Figure 3.3). The first is to use the intersection functionality to combine the
results from multiple queries. As shown in Figure 3.3, five different hypothetical
queries are displayed for a helminth genome. Combining in this manner is
progressively restrictive because with the intersection of each query many genes
are filtered away. Thus, starting from the whole genome of a helminth, which may
containmore than 2� 104 genes, onemay end upwith less than 100 genes. All genes
contained in the resulting list will qualify for all of the criteria employed. Although
this method helps to generate a list containing only the desired targets, it has the
drawback of excluding genes that failed only one of the criteria used and does not
provide the flexibility of modifying the target list without dramatically changing the
query parameters or the query itself. One of the main issues affecting intersection-
based strategies is the quality of the available genomes and their annotation. If
resources allocated to manual curation of a genome are limited, or if the body of
experimental evidence for any given genome is not sufficiently large or diverse, then
it is more likely that many genes will fail to meet simple criteria that depend on the
quality of annotation (e.g., �kinase� will not match a kinase that was annotated as
�hypothetical protein�). Poor gene identification strategies (incorrect gene models
that lead to the wrong identification of translational start sites and/or splicing sites)
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can also lead to failures of many downstream bioinformatics predictions (e.g.,
orthology detection, and domain and motif identification). For many helminth
genomes available as drafts, alternative prioritization strategies may help to lower
the impact of some of these knowledge gaps.

The second way to prioritize genes is to apply the union functionality in
combination with weight assignments for individual queries. In Figure 3.3, this
is demonstrated using the same queries used above with the intersection example.
Note that for each query aweight value is assigned andwhen a gene qualifies for two
or more query criteria, the individual weight values add up and provide a way to
rank genes. Thus, in the example shown, genes that qualify for all of the selected
criteria used to run the queries will receive themaximumweight value of 210 while
other genes will receive lower weight values based on their qualifying criteria. The
resulting list will contain all the genes from the genome ranked according to their
weight values. The ranked target list can be easily modified by adjusting the weight
values assigned to each criterion. The ranked list also provides users with a
genome-wide perspective on how useful the chosen criteria are for the purpose
of target selection. By default, TDR Targets performs a union of multiple queries
run by users and provides a ranked list. Alternatively, users can manage and
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Figure 3.3 Examples of different strategies
employed to prioritize targets using the TDR
Targets database. The left side demonstrates
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functionality to run queries, whereas the right
side demonstrates the union (OR) functionality.

When using the intersection query, only genes
that have qualified for all the selected criteria are
obtained. In contrast, the union query facilitates
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details, see [24].
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combine their queries in various ways using the functionalities available on the
history page.

Target Prioritization in B. malayi and S. mansoni Using the TDR Targets
Database

Genomic data for B. malayi and S. mansoni is integrated into the TDR Targets
database and, based on orthology, their genes have been mapped to C. elegans
phenotypic data. Using these data, examples of target prioritization were carried
out for both these parasites [45] and the results are available for viewing and
modification on the database site (B. malayi, http://tdrtargets.org/published/
browse/361; S. mansoni, http://tdrtargets.org/published/browse/336). In these
examples, targets have been prioritized based on a number of features; phenotype
upon RNAi of the C. elegans ortholog, availability of structural models, availability of
orthologs inC. elegans, predicted druggability, function as a catalyst (i.e., an enzyme),
and assayability. The weights used for each criterion are heavily biased towards loss-
of-fitness phenotypes with less weight for other features. Owing to the differences in
the availability of data, but also because we wanted to illustrate the flexibility of the
TDR Targets resource, we used somewhat different sets of criteria for each species.
One of the main differences was the availability of gene expression data for
S. mansoni. These data were derived from stage-specific EST sequencing projects
available at SchistoDB [30] and were used to give an additional score to those gene
products expressed in those life cycle stages relevant to infection in humans.

As a number of current anthelmintics modulate neuromuscular function [47],
another useful prioritization strategy may take into account not just the timing
of expression (developmentally regulated genes), but also the anatomical location
of expression (spatially regulated genes). Genome-wide experimental datasets contain-
ing this information are currently lacking for parasitic helminths. Therefore, we used
C. elegans expression data mapped to the corresponding orthologs of B. malayi and
S. mansoni. These data, derived from a large compendium of microarray analyses
(916 experiments from 53 datasets), were recently reanalyzed [48] to obtain subsets of
genes that are differentially expressed in various tissues. The underlying hypothesis is
that a gene that is expressed in a defined tissue (e.g., muscle) in one organism ismore
likely to have the same pattern of expression in another related organism. The
evolutionary divergence of B. malayi and, especially, S. mansoni from C. elegans will
need to be considered accordingly when weighting these criteria.

For this exercise, we used the same criteria and weights as before forB.malayi and
S. mansoni [45], but added additional weights to those genes for which orthologs in
C. elegans are expressed in nervous or muscular tissues. The results of these
prioritizations are available from TDR Targets (S. mansoni, http://tdrtargets.org/
published/browse/394; B. malayi, http://tdrtargets.org/published/browse/395).
Although both the previous prioritization exercises and these latest revisions are
very similar in displaying cytoskeleton and motor proteins, such as b-tubulin (the
target of benzimidazole anthelmintics), dyneins, and myosins, at the top of these
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lists, a number of additional interesting targets emerge based on the criterion of
tissue expression. For S. mansoni, among the 37 genes that were raised into the top
100 are a number of potentially druggable targets such as a putative Ras-like GTPase
(Smp_146600), a putative calcium-dependent protein kinase (Smp_011660.2), and a
putative tyrosine kinase (Smp_136300). For B. malayi, a similar approach led to
higher scores for a number of potentially druggable targets, including a putative
adenylate kinase (Bm1_24575), a Ser/Thr protein phosphatase family (Bm1_41290),
and a short-chain dehydrogenase potentially involved in the metabolism of steroids
(Bm_45995). Although these targets await further experimental validation, the
underlying idea behind these computational exercises is that increased usage of
experimental data providing information on different independent criteria (i.e.,
orthogonal, see [35]) should drive these prioritizations.

Currently Unavailable Genomic Datasets that will Improve Target
Prioritization for Parasitic Helminths

A number of key datasets that would enhance the prioritization of targets in parasitic
helminths are not yet available. Some of these datasets are high on the lists of
priorities of many scientists and funding agencies, and, accordingly, deserve to be
listed again. There is a notable lack of genomic-scale assessment of phenotypes
caused by either targeted gene disruption or RNAi, particularly for flatworms, since
C. elegans is not a perfect model of their biology. Targeted gene disruptions (e.g.,
knockouts) are a more reliable indicator of phenotype than RNAi, for which off-
targeting is a real problem [22, 49]. Datasets that reveal the temporal and spatial
expression of genes would also be highly valuable. Although substantial transcrip-
tomic sequence information has become available for schistosomes over the last
decade (cited in [16]; see also SchistoDB), and high-throughput sequencing has been
(and will be) a boon for trematodes and nematode parasites (see also Chapters 4
and 5), the breadth and depth of these datasets requires further improvement. In
addition, it is worth noting that protein structure information for these organisms is
also limited. Although this is not strictly a validating criterion, knowledge of the
structure of a target helps in a number of downstream analyses, such as the
identification of potential ligand binding sites, the assessment of the likelihood of
binding by small molecules and in the rational design of inhibitors. As of July 2011,
the Protein Data Bank [50] carries the following structural data for helminths:
Nematoda, 194 structures; Platyhelminths, 71 structures (Cestoda, two structures;
Trematoda, 64 structures). Even when taking into account potential redundancies
(several structures solved for the same protein), these figures are less than those
for other parasites that cause neglected diseases (e.g., 552 and 564 structures available
for trypanosomatids and apicomplexans, respectively). Finally, a recent addition to
the TDR Targets database is the integration of chemical datasets (available as of
Version 4) [51]. The availability of links between targets and compounds, manually
curated from the literature, as well as the ability to perform similarity searches
between compounds, opens the door to more comprehensive prioritizations. In this
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context, datasets fromhigh-throughput chemical andwhole-organism screenswould
be valuable as they would allow users to identify chemical scaffolds that are bioactive
against helminths and thatmay then be linked by similarity to other compounds, and
ultimately, to potential targets. Furthermore, the inclusion and integration of data for
inactive compounds would be as important, not least in avoiding unnecessary
duplication of effort. A comparison of the activity profile of any given compound
against different parasitic helminths canhelp to shed light on thepotentialmode(s) of
action of the compound.

Conclusions

Helminth infections are among the most neglected of human diseases relative to
their global burden. Despite limited resources dedicated to either fundamental
research or applied drug discovery for these organisms, recent whole-genome
projects and transcriptomic surveys of many helminths offer promising starting
points for chemotherapeutic or vaccine-based interventions. A challenge for these
genome projects is that some of the respective organism-specific research com-
munities are relatively small. This means that the human resources and biological
technologies to fully exploit the data arising from somehelminth genomes are quite
limited. This has two important implications. (i) Limited resources make it all the
more important to prioritize the most promising therapeutic targets from the
myriad of potential macromolecules to work on. (ii) Where possible, relevant
chemical and genetic data should be identified and ported from more thoroughly
studied organisms. These tasks are limited by the appropriateness of the model
organism and organism-specific features that can render cross-species inferences
unsound. Nevertheless, genomics-based approaches will facilitate the process of
identifying tractable drug targets and finding promising chemical leads for
anthelmintic development. Informatic tools such as TDR Targets serve a useful
function in organizing the genomic, phyletic, phenotypic, and chemical resources
necessary for target identification. Also, cross-organism platforms that combine
various individual genome projects (such as EuPathDB, GeneDB, and TDR
Targets), assisted by comparative genomics, will certainly provide valuable insights
into the biology of helminths and other parasites, particularly those outside the field
of tropical diseases. Much remains to be done to alert such potential users to the
significance of genomics in helminth drug development and to kindle their interest
therein.
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